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Particle-core analysis of mismatched beams in a periodic focusing channel

Masanori Ikegami
Proton Accelerator Laboratory, Japan Atomic Energy Research Institute, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195, Jap

~Received 31 August 1998!

A method is derived for applying particle-core analysis to mismatched beams in a periodic focusing channel.
By carefully choosing the parameters to yield a favorable core frequency, a Poincare´ surface of section plot is
obtained. The plots for a periodic solenoid channel exhibit a striking resemblance to those in continuous
focusing cases, while those for an alternating-gradient channel exhibit a strong chaoticity which is not seen in
the corresponding continuous focusing situation. Only the breathing mode oscillation of a core has been
considered in solenoid focusing cases. On the other hand, the quadrupole mode oscillation of a core has also
been considered in the case of an alternating gradient channel. We examine the effects of both modes on the
test particle stability, and find that the quadrupole mode oscillation can also drive the particle-core resonance
and cause beam halo formation. The halo extent is also examined. The maximum halo width is found to be
about twice as large as the maximum core width in breathing oscillation cases in both periodic solenoid and
alternating-gradient channels. In quadrupole oscillation cases, the halo width exhibits density dependence, and
ranges from 1.2 to 2 times the maximum core width. These results give us a practical criterion to determine the
bore radius in designing high-intensity accelerators.@S1063-651X~99!06502-2#

PACS number~s!: 41.75.2i, 29.27.Bd, 52.25.Wz
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I. INTRODUCTION

In recent years, it has been proposed to use high-inten
and high-power ion accelerators as a driver for a spalla
neutron source, production of tritium, transmutation
nuclear waste, etc.@1#. In designing these next-generatio
accelerators, it is extremely important to understand cle
space-charge-induced phenomena, such as structure-d
resonance, charge redistribution, equipartitioning, and be
halo formation. It is especially essential to understand fu
the beam halo formation mechanism, because a small f
tion of beam loss causes serious radioactivation of the ac
erator structure and prevents hands-on maintenance.

From this point of view, halo formation in intense io
beams has been studied extensively in both theoretical
numerical ways. In these studies, the so-calledparticle-core
model@2,3# has frequently been used. In this model, we u
ally consider a beam propagating in a continuous focus
channel, and assume that its core has a Kapchins
Vladimirskij ~KV ! distribution @4#. Initial beam-size mis-
match induces the oscillation of a core. Test particles
tially located outside the core execute betatron oscillat
under the influence of the nonlinear space-charge field
duced by the oscillating core. We examine the time evolut
of test particles, assuming that the core oscillation is
influenced by the motion of these test particles. The tune
the betatron oscillation is amplitude dependent due to
nonlinearity of the space-charge field. Therefore, a test
ticle is trapped at certain amplitude by the 2:1 resona
between core and test particle oscillation. Test particles w
certain initial conditions gain excess energy through
resonance and form halos. When the beam density and
degree of mismatch are higher than certain thresholds, r
nance overlap and chaos@5# are observed in test particl
motion. The chaosity is thought to play a key role in enha
ing the chance for the particles initially located just outs
the core to be trapped by the resonance. A map of trajecto
PRE 591063-651X/99/59~2!/2330~9!/$15.00
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followed by test particles placed at given starting positio
can be obtained by the Poincare´ surface of section techniqu
for this simple model. This non-self-consistent test parti
method gives us a clear insight into the halo formation p
cess, while it is difficult to use it to explore the transpo
dynamics. That is, it is difficult to examine with this mod
whether the particles initially located inside a core can
cape from the core and form halos.

An approach that also allows the transport dynamics to
investigated in the beam-halo study is a self-consistent si
lation using macroparticles. In self-consistent simulati
studies of continuously focused beams, features such as
separatrix and fixed point locations are found to be in go
agreement with those obtained with the particle-core mo
@6#.

Halo properties in periodically focused cases were a
studied self-consistently. In that study, a close resembla
to the continuous focusing cases was found for a perio
solenoid channel, unless instability due to structure-driv
resonance is induced@7#. Though the role of the particle-cor
resonance in a periodic focusing situation can be dire
investigated by applying the particle-core model, very fe
attempts have been made to apply the model to mismatc
cases except for the pioneering work performed by Lagn
@8#. This is mainly due to the difficulty in finding the funda
mental frequency of the system. In the particle-core analy
the Poincare´ mapping technique is an essential tool to exa
ine the stability properties of test particles, and we need
know the fundamental frequency of the system to use
technique. It is generally difficult to know the fundament
frequency in periodic focusing cases because there are
sources of periodicity, namely, the external focusing fie
periodicity and that due to initial beam-size mismatch.
fact, the solution of the envelope equation itself is known
show very complicated features including parametric re
nance and chaos@9#. The effect of the unstable behavior o
the envelope on halo formation is also an interesting subj
2330 ©1999 The American Physical Society
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However, it seems to be reasonable to restrict our intere
cases where core oscillation is stable, taking into account
resemblance mentioned above and the fact that the enve
is known to be stable with a reasonable choice of parame
From that point of view, we have tried to obtain the fund
mental frequency of stable core oscillation, and apply
particle-core model to mismatched beams in a periodic
cusing channel.

In Sec. II, we present the method of applying the partic
core model to mismatched beams in a periodic channel. T
we apply the method to mismatched beams in a perio
solenoid channel. In this case, we assume that the beam
external focusing field have an axial symmetry, and, hen
only the breathing mode oscillation can be excited. In S
III, we apply the same method to mismatched beams in
alternating-gradient focusing channel. As a test channel,
employ a FODO channel with a 50% filling factor, each c
of which consists of a focusing quarupole magnet and a
focusing quadrupole magnet of equal strength. In this c
the beam and external focusing field have no axial sym
try, and, hence, both the breathing and quadrupole mode
cillation can be excited. In Sec. IV, we estimate the ma
mum halo extent in periodic focusing channels. Aft
discussions, a summary is given in Sec. V. In the pres
study, we will restrict our treatment to test particles with ze
angular momentum and an unbunched core with the KV
tribution.

II. AXIALLY SYMMETRIC CHANNEL

A. Numerical method

Assuming axial symmetry of the beam and an exter
focusing field, the time evolution of a beam envelope is g
erned by the envelope equation

d2Rb

ds2 1k~s!Rb2
K

Rb
2

«2

Rb
3 50, ~1!

whereRb is the beam radius,k(s) is the periodic function
representing the external focusing field strength,K is the
generalized perveance,« is the rms emittance of the beam
and the independent variables is the distance measure
along the beam line. Then we transform the envelope eq
tion to a dimensionless form using the following dimensio
less parameters and variables:t5s/S for the independen
variable, q(t)5S2k(s) for the dimensionless focusin
strength function,G5KS/« for the scaled space-charge pe
veance, andR5Rb /A«S for the scaled beam radius, withS
the length of a focusing cell. In terms of new variables, E
~1! becomes

d2R

dt2 1q~t!R2
G

R
2

1

R3 50. ~2!

The functionq~t! is related to the zero-current phase a
vances0 , andG is related to the tune depressionh, that is,
the ratio of the space-charge depressed phase advance
zero-current phase advance. The matched solutionR0 of Eq.
~2! can be obtained with the help of an optimization cod
For later reference, here we introduce a mismatch param
which is a measure of the degree of initial beam-size m
to
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match, and defined asM5@R(0)2R0(0)#/R0(0). It should
be noted thatR0(0) corresponds to the maximum radius of
matched beam since the origin of the coordinatet is located
at the center of a focusing solenoid.

With the use of the smooth approximation, we can mo
to the corresponding constant focusing situation simply p
ting q(t)5s0

2 @10#. Therefore, Eq.~2! can be rewritten in
the smooth approximation as

d2Rs

dt2 1s0
2Rs2

G

Rs
2

1

Rs
3 50, ~3!

whereRs is the scaled beam radius in the approximation. T
equilibrium solution of Eq.~3! is given byRs

051/As, which
corresponds to the matched radius for the equivalent cont
ous focusing channel. Here we introduce a mismatch par
eter which is defined, in an analogous way with period
cases, asMs5@Rs(0)2Rs

0#/Rs
0.

In weakly mismatched cases, the phase advance of
breathing mode oscillation of the envelope can be appro
mated by

sm5A2~11h2!1 1
2 ~119h2!Ms

2s0 , ~4!

where we use a combination of a simple perturbation met
and an averaging method@11#. Note here that only the
breathing mode oscillation can be excited in this case
cause of the assumed axial symmetry of the beam and e
nal focusing field.

Here we assume that the oscillation of a core can be
proximated by a simple composition of two oscillatio
modes: one is excited by the initial beam-size misma
~mismatch mode!, and the other is excited by the period
nature of a focusing structure~structure mode!. Based on the
smooth-approximation analysis above, the phase advanc
the mismatch mode is expected to besm . On the other hand
the fundamental period of the structure mode is appare
synchronized with the focusing structure. Thus, it is obvio
that if sm/2p is a rational number; that is,sm/2p can be
expressed by two relatively prime integersm and n as
sm/2p5n/m, the mismatched envelope is exactly period
in t with the period ofm @12#. Note here that, recalling Eq
~4!, we can makesm/2p rational by choosing appropriat
values forh and Ms . We can easily obtain a Poincare´ sur-
face of section plot in such cases by plotting test parti
locations everym focusing periods. That is our strategy
apply the particle-core method to mismatched beams i
periodic channel.

Finally, we write down the equation of motion for a te
particle. Assuming that the core has a KV distribution a
test particles have no angular momentum, the equation
motion in terms of the dimensionless variables is given b

d2x

dt2 1q~t!x2
G

R2 x50 ~ uxu<R! ~5!

and

d2x

dt2 1q~t!x2
G

x
50 ~ uxu.R!. ~6!
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Numerically integrating Eqs.~2!, ~5! and ~6!, we can obtain
the time evolution of the test particles. In the integration,
fourth-order symplectic integration algorithm@13# is em-
ployed.

B. Numerical results

Here let us show an example in which we conside
periodically interrupted solenoid channel havings0545°
and a 50% filling factor. The beam parameters are set to
h50.5 and M50.3. These parameters are determined
yield sm5360/5572° by Eq.~4! with the help of an opti-
mization code@14#. As shown in Fig. 1, the fundamenta
period of the core oscillation coincides with five focusin
periods with a very good accuracy. We can also see in Fi
that the core oscillation is almost dominated by the misma
mode, and that the contribution from the periodic nature
focusing field is fairly small. Plotting test particle position
every five focusing periods, we successfully obtain the Po
carésurface of section plot shown in Fig. 2. In this figure, t
test particle position divided byRmax[R(0) is taken as the
abscissa, and the strobe time is taken ast50 mod 5. Figure
2 exhibits a striking resemblance with continuous focus

FIG. 1. Time evolution of the scaled beam envelope in a p
odic solenoid channel. The parameters are set tos0545°, h
50.5, andM50.3 to yieldsm572°. The solid line represents th
scaled beam radius obtained by numerically solving Eq.~2!, while
the broken line represents the solution for the corresponding
tinuous channel.

FIG. 2. Poincare´ surface of section plot for a beam in a period
solenoid channel. The same parameters as in Fig. 1 are ado
The test particle positions are plotted every five focusing perio
taking the strobe time ast50 mod 5.
e
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be
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cases@2#. There is no smearing of the Poincare´ plot as would
occur if sm/2p were irrational.

III. ALTERNATING-GRADIENT CHANNEL

A. Numerical method

This strategy is also applicable to the beams in chann
without axial symmetry such as FODO channels. Assum
that the zero-current phase advance and emittance are
same in the horizontal and vertical directions, the envelo
equations are given in terms of dimensionless variables

d2X

dt2 1q~t!X2
2G

X1Y
2

1

X3 50 ~7!

and

d2Y

dt22q~t!Y2
2G

X1Y
2

1

Y3 50, ~8!

whereX andY are, respectively, the scaled beam half-wid
for the horizontal and vertical directions. The matched so
tion X0 andY0 can be obtained numerically. The mismat
parameters for the horizontal and vertical directions can
defined as Mx5@X(0)2X0(0)#/X0(0) and M y5@Y(0)
2Y0(0)#/Y0(0), respectively. It should be noted thatX0(0)
and Y0(0), respectively, correspond to the maximum a
minimum of the beam half-width of a matched beam sin
the origin of the coordinatet is located at the center of
focusing quadrupole magnet.

It is to be noted that two types of mismatch mode osc
lation can be excited in a FODO channel. One is the brea
ing mode oscillation which was also considered in Sec.
The other is the quadrupole mode oscillation, where the
cillation for the horizontal and vertical directions are 18
out of phase. The frequency of the breathing mode osc
tion can be obtained again by Eq.~4!. The frequency of the
quadrupole mode oscillation is given by

sm5A113h215h2Ms
2s0 , ~9!

which is obtained in an analogous way with Eq.~4!.
As we assume that there is no coupling between the h

zontal and vertical motion except for the space-charge fo

i-

n-

ed.
s,

FIG. 3. Time evolution of the scaled beam envelope in a FO
channel~breathing oscillation case!. The parameters are set tos0

545°, h50.5, andMx50.3 to yieldsm572°. The solid and bro-
ken lines, respectively, represent the scaled beam half-width for
horizontal and vertical directions.
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FIG. 4. Poincare´ surface of section plots for beams withh50.5. The cores executing breathing mode oscillation in FODO channels
been considered. Three different mismatches, i.e.,Mx50.3, Mx50.1, andMx50.05, have been applied. The test particle positions
plotted every five focusing periods, taking the strobe time ast50 mod 5. Zero current phase advances are set to~a! s0545°, ~b! s0

545.3°, and~c! s0545.4°, respectively, to yieldsm572°.
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the beam ellipse remains to be upright in real space. Furt
more, we only consider the test particles which have no
gular momentum. Therefore, the motion of the test partic
initially located on the horizontal or vertical plane is r
stricted on that plane.

Thus the equations of motion for the test particle initia
located on the horizontal plane can be written@3,15# as

d2x

dt2 1q~t!x2
2G

X~X1Y!
x50 ~ uxu<X!, ~10!

and

d2x

dt2 1q~t!x2
2G

x21uxuAx21Y22X2
x50 ~ uxu.X!.

~11!
r-
n-
s

B. Numerical results for breathing mode oscillation cases

First, we will consider the cases where breathing mo
oscillation of a core is excited. Figure 3 shows an example
which we consider a FODO channel havings0545° and a
50% filling factor. The beam parameters are set to beh
50.5 and Mx50.3. These parameters are determined
yield sm5360/5572° using an optimization code and E
~4!. We can see in Fig. 3 that the modulation of core os
lation due to the periodic nature of the focusing field is mu
larger than in periodic solenoid cases. Plotting test part
positions every five focusing periods, we successfully obt
a Poincare´ surface of section plot.

Fixing the tune depression ash50.5, three different ini-
tial mismatches, i.e.,Mx50.3, Mx50.1, andMx50.05, are
considered in Fig. 4. In this figure, the particle positio
scaled byXmax[X(0) is taken as the abscissa, and the stro
time is taken ast50 mod 5. Figure 4 exhibits strong chao
ticity, which is a striking contrast to solenoid focusing cas
nels
every
FIG. 5. Poincare´ surface of section plots for beams withMx50.3. The cores executing breathing mode oscillation in FODO chan
have been considered. Two different tune depressions, i.e.,h50.3 and 0.7, have been considered. The test particle positions are plotted
five focusing periods, taking the strobe time ast50 mod 5. Zero current phase advances are set to~a! s0548° and ~b! s0540.2°,
respectively, to yieldsm572°.
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The chaotic region surrounds both the core and the 2:1 r
nance islands, and such a kind of chaotic region is though
enhance halo intensity. As such strong chaosity is obse
only with higher beam density in solenoid focusing cases
can be concluded that the global chaos is observed in w
parameter space in alternating-gradient focusing cases
in solenoid focusing cases. Actually, we have observed
global chaos even with a mismatch of 10% in the case
h50.5, as shown in Fig. 4~b!. As the degree of mismatch i
decreased, some invariant curves are restored at a ce
threshold and separate the chaotic region into several
chastic layers. As a result, the global chaos which contribu
to the enhancement of the halo intensity disappears. We h
found that the threshold exists betweenMx50.05 and 0.1 in
the case ofh50.5. In fact, Fig. 4~c! shows that the particle
initially located in the vicinity of the core are confined by a
invariant curve and cannot escape to orbit around the
resonance islands in the case of 5% mismatch.

Figure 5 shows Poincare´ surface of section plots fo
beams with lower and higher tune depressions, i.e.,h50.3
and 0.7, but the same initial mismatch, i.e.,Mx50.3. As
shown in Fig. 5~a!, the Poincare´ plots for beams with highe
beam density are similar to that for theh50.5 case. Con-
versely, as can be clearly seen in Fig. 5~b!, the results for the

FIG. 6. Time evolution of the scaled beam envelope in a FO
channel~quadrupole oscillation case!. The parameters are set t
s0552.75°,h50.5, andMx50.3 to yieldsm572°. The solid and
broken lines, respectively, represent the scaled beam half-width
the horizontal and vertical directions.
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lower density cases exhibit a remarkable difference from
h50.5 case. A sudden decrease of chaotic area is occurr
aroundh50.5;0.6. Note here that, in spite of the decrea
of chaosity, the global chaos which is expected to incre
halo intensity is seen even in the low density case withh
50.7.

C. Numerical results for quadrupole mode oscillation cases

Second, we will consider the cases where quadrup
mode oscillation of a core is excited. Figure 6 shows the ti
evolution of a core executing a quadrupole mode oscillati
A FODO channel havings0552° and a 50% filling factor is
considered, and the beam parameters are set to beh50.5
and Mx50.3. These parameters are determined to yieldse

5360/5572° using an optimization code and Eq.~9!.
The dependence of the phase space topology on the

gree of mismatch is shown in Fig. 7, where three differe
initial mismatches, i.e.,Mx50.3, Mx50.1, andMx50.05,
are considered fixing the tune depression ash50.5. The
most interesting feature shown in Fig. 7 is the existence
two wide chaotic regions formed around the central co
One is the chaotic region surrounding the core and the
resonance islands, which is also seen in breathing oscilla
cases. As readily seen in Fig. 7, the distance between
core boundary and the stable fixed points of the 2:1 re
nance is shorter than in breathing oscillation cases. This
sults in a decrease of the chaotic area surrounding the
resonance islands. The other is the wide chaotic band
rounding the inner chaotic region, which is observed only
quadrupole oscillation cases. A closer look reveals that th
two chaotic regions are separated by an invariant curve in
three cases in Fig. 7. Because of the existence of the inv
ant curve, the particles initially located in the vicinity of th
core are confined into the inner chaotic region. Note h
that, as shown in Fig. 7~c!, these chaotic regions are ob
served even in the slightly mismatched case with 5% m
match in contrast to breathing oscillation cases.

The density dependence of Poincare´ plots is shown in Fig.
8, where two different tune depressions, i.e.,h50.3 and 0.7,
are considered, fixing the mismatch factor asMx50.3. As

or
nels
are
FIG. 7. Poincare´ surface of section plots for beams withh50.5. The cores executing quadrupole mode oscillation in FODO chan
have been considered. Three different mismatches, i.e.,Mx50.3, Mx50.1, andMx50.05 have been applied. The test particle positions
plotted every five focusing periods, taking the strobe time ast50 mod 5. Zero current phase advances are set to~a! s0552.75°, ~b! s0

554°, and~c! s0554.25°, respectively, to yieldsm572°.
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FIG. 8. Poincare´ surface of section plots for beams withMx50.3. The cores executing quadrupole mode oscillation in FODO chan
have been considered. Two different tune depressions, i.e.,h50.3 and 0.7, have been considered. The test particle positions are plotted
five focusing periods, taking the strobe time ast50 mod 5. Zero current phase advances are set to~a! s0561.5° and~b! s0544.8°,
respectively, to yieldsm572°.
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shown in Fig. 8~a!, as the beam density is increased, t
invariant curve separating the chaotic region into two cha
regions is destroyed, and a large chaotic sea is formed.
threshold at which the invariant curve is destroyed is loca
betweenh50.4 and 0.5 in the case ofMx50.3. Conversely,
as can be readily seen in Fig. 8~b!, the chaotic region is no
present in cases with lower beam density. The chaotic reg
disappears at aroundh50.5;0.6.

IV. HALO EXTENT

In the usual particle-core analysis, test particles lock
into the 2:1 resonance are considered to be halo partic
The oscillation amplitude of these particles is known to
self-limited due to the amplitude dependence of oscillat
frequency. Thus, to estimate the maximum halo radius,
simply examine the maximum radius of the particle which
located on the separatrix of the 2:1 resonance island. In c
ic
he
d

n

d
s.

e
n
e

n-

tinuous focusing cases, the maximum radius can be ea
obtained by making a Poincare´ plot with the strobe time
taken when the core radius is minimum. In that way, t
maximum halo radius is found to be approximately twice
large as the maximum core radius@2#.

However, the maximum halo extent in a periodic chan
cannot be obtained generally in an analogous way. As
example, let us show a Poincare´ plot in Fig. 9~a!, where the
strobe time is taken to bet52.5 mod 5 and other paramete
are set to be the same with Fig. 4~a!. In Fig. 9~a!, the 2:1
fixed points are located on the abscissa, and the core h
width is minimized. However, the width of the separatr
does not reach the maximum because the core half-widt
too small at the strobe time due to strong external focus
force. In fact, it is easily seen that the separatrix width in F
9~a! is smaller than that in Fig. 4~a!. This means that halo
width is not always maximized when the core width is a
minimum in periodic focusing cases. Tracking the partic
FIG. 9. Poincare´ surface of section plots for a breathing beam in a FODO channel. The strobe times are taken as~a! t52.5 mod 5 and
~b! t52 mod 5, respectively. Other parameters are taken to be the same as in Fig. 4~a!.
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FIG. 10. Resonance lines of the 2:1 and higher order particle-core resonances in the weak mismatch limit. The resonance
scaled by the single particle zero-current betatron frequency is taken as the ordinate. The cores executing breathing and quadru
oscillations are considered. The core frequency for those modes is calculated by Eqs.~4! and ~9!. The maximum and minimum betatro
frequencies of the test particles are also shown.
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which is initially located in the vicinity of the separatrix, w
find that the halo width reaches a maximum at aroundt
52 mod 5 ort53 mod 5 in this case. A Poincare´ plot is
shown in Fig. 9~b!, where the strobe time is taken ast
52 mod 5. We readily see in Fig. 9~b! that the maximum
halo width is approximately twice as large as the maxim
core width. This is roughly the same size as those in cont
ous focusing cases. Similar results are found in genera
breathing oscillation cases in both periodic solenoid a
FODO channels.

The results for quadrupole oscillation cases show so
more complicated features. First, let us consider the c
where the global chaos is not seen, as is the case in Fig.~b!.
In this case, we can consider only the particles locked i
the 2:1 resonance as halo particles. It is readily seen tha
maximum halo width is much smaller than in breathing o
cillation cases, because the fixed points of the 2:1 resona
are located nearer to the core boundary. In fact, the typ
halo width in this case is found to be about 1.2 times as la
as the maximum core width. Second, we consider the c
where the global chaos emerges, but it is divided by an
variant curve into two chaotic regions as is the case in Fig
In this case, the maximum halo width is, again, found to
much smaller than in breathing oscillation cases, if we c
sider only the particles in the inner chaotic region as h
particles. Finally, as the beam density becomes higher th
certain threshold, the invariant curve is destroyed and
chaotic regions merge into one large chaotic sea, as is
case in Fig. 8~a!. As the invariant curve disappears, the p
ticle initially located in the inner chaotic region starts
diffuse, and this results in a sudden increase of halo ext
Thus the halo extent is density dependent in the case o
quadrupole mode oscillation. The halo width is rough
twice as large as the maximum core width in the case wh
the invariant curve is destroyed. This is roughly the sa
size as those in breathing oscillation cases.

V. DISCUSSION

As shown in the preceding sections, stronger chaosit
observed in alternating-gradient cases than in solenoid fo
u-
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ing cases. The strong core modulation due to the exte
focusing field in an alternating-gradient channel is though
be a main cause of this difference. The phase advanc
each test particles t is amplitude dependent, and takes
value betweenhs0 ands0 . As shown in Fig. 10, resonanc
lines of the 2:1 and higher order particle-core resonance e
in this range. Test particles whose betatron frequency is
ficiently near to the resonance frequency are trapped by
resonance. Furthermore, there must be resonance drive
the external focusing periodicity. That is, there exists re
nance between the test particle oscillation and the exte
focusing periodicity which satisfy the conditions,s t/2p
5n/m andhs0,s t,s0 . Because the order of theparticle-
structure resonanceis usually high, the effect of the reso
nance itself is expected to be small. However, the resona
overlap between the particle-structure resonance
particle-core resonance can modify the phase space topo
and result in global chaoticity. The effect of the particl
structure resonance is much stronger in an alternat
gradient channel because of the strong core modulation
to the external focusing force. That seems to be the rea
why the strong chaoticity is observed in an alternatin
gradient channel. The existence of the strong chaoticity s
gests that the requirement on the degree of mismatch
beam intensity to suppress halo may be severer
alternating-gradient channels than in periodic solenoid ch
nels.

Another interesting feature which has been found in t
study is the difference of the phase space topology betw
breathing and quadrupole mode oscillation cases. In qua
pole oscillation cases, two chaotic regions are found w
certain beam density, as shown in Fig. 7. The inner cha
region surrounds the core and the 2:1 resonance islands.
outer chaotic band is formed around the inner chaotic reg
which is observed only in quadrupole mode oscillation cas
The existence of the outer chaotic region suggests that
tain higher order particle-core resonances has more im
tance than in breathing oscillation cases. As shown in F
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10, there are many particle-core resonance lines and ea
them, more or less, affects the phase space topology.
degree of the influence on test particle motion is stron
dependent on the order of the resonance and the fixed p
location. In general, the particle-core resonance has na
width and hardly affects test particle motion if the fixed po
locations are too near to the core boundary. Conversel
resonance whose fixed points are located too far from
core cannot affect the motion of the test particles which
initially located in the vicinity of the core. As readily seen
Fig. 10, the resonance frequency of the 2:1 resonance
little lower in quadrupole oscillation cases compared
breathing oscillation cases. Accordingly, the fixed point
cation of the resonance becomes nearer to the core boun
and the island width is decreased. Instead, the fixed poin
a resonance whose frequency is a little higher than the
resonance shift toward the core boundary. Then the effec
the resonance on test particle motion is increased. T
seems to be why certain higher order resonances have
importance in quadrupole oscillation cases compared
breathing oscillation cases.

In this study, we have considered only cases where ei
the breathing or quadrupole mode oscillation is excit
However, the initial mismatch, in general, induces bo
modes of oscillation in an actual machine. The simultane
excitation of both modes increases the density of the re
nance lines. The resulting resonance overlap may ca
stronger chaosity in wider parameter space. Finally, it sho
be noted that the technique we use in this study is also
plicable to investigate halo formation in a circular machin
provided that the effect of the dispersion can be neglec
@16#.

VI. SUMMARY

We have shown a way of determining the fundamen
frequency of stable core oscillation based on the smo
approximation analysis. Using this technique, we carefu
choose parameters to yield favorable core frequencies, w
allows a Poincare´ surface of section plot to be obtained for
n-
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mismatched beam in a periodic focusing channel. The p
for a periodic solenoid channel show a striking resembla
to those in continuous focusing cases. The focusing fi
periodicity does not play an important role in a periodic s
lenoid case. This is consistent with the results obtained
macroparticle simulations.

The same method is also applied to the beams in FO
channels, where both breathing and quadrupole modes o
core oscillation have been considered. Though some dif
ences of the phase space topology are observed betw
breathing and quadrupole oscillation cases, stronger chao
is found to exist in both cases in a wider parameter spa
This suggests that the strong modulation of the core osc
tion due to alternating-gradient focusing force affects the
particle stability and induces strong chaosity. The stron
chaosity is thought to cause an increase of halo intensity,
makes the conditions imposed to suppress halo intensity
der a certain level more severe.

The halo extent is examined. It is found that the ma
mum halo width is about twice as large as the maximum c
width in breathing mode oscillation cases in both perio
solenoid and FODO channels. In quadrupole mode osc
tion cases, the halo width is density dependent, and ran
from 1.2 to 2 times as large as the maximum core width.
short, in spite of the significant difference of the phase sp
topology from the corresponding continuous situation,
maximum halo width in a periodic focusing channel
smaller than or comparable with that obtained in continuo
focusing cases. This gives us a practical criterion for de
mining the bore radius of an accelerating structure in des
ing high-current ion accelerators.
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